## II B.Tech - I Semester –Regular / Supplementary Examinations DECEMBER 2022

## MECHANICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

|        |    |                                                                                                                                                                                                                             | BL | СО  | Max.<br>Marks |  |  |  |
|--------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---------------|--|--|--|
| UNIT-I |    |                                                                                                                                                                                                                             |    |     |               |  |  |  |
| 1      | a) | Explain Lami's Theorem of equilibrium of 3 forces.                                                                                                                                                                          | L2 | CO1 | 4 M           |  |  |  |
|        | b) | Determine the Resultant of the forces acting on<br>the bracket joint as shown in Fig. and also<br>represent the direction (angle) of resultant force<br>with respect to X axis with a neat sketch.<br>$F_3 = 650 \text{ N}$ | L3 | CO2 | 10 M          |  |  |  |
|        |    | OR                                                                                                                                                                                                                          |    |     |               |  |  |  |
| 2      | a) | Illustrate the following: coplanar, Non- coplanar forces, Concurrent and Non concurrent forces.                                                                                                                             | L2 | CO1 | 4 M           |  |  |  |
|        | b) | Two cylinders E, F of diameter 60mm and 30mm<br>weighing 160N and 40N respectively are placed<br>as shown in Fig. Assuming all the contact<br>surfaces to be smooth, find the reactions at A, B,<br>and C.                  | L3 | CO2 | 10 M          |  |  |  |





|        | b)       | The rectilinear motion of a particle is defined by<br>the displacement time equation<br>$X = t^4 - 3t^3 + 2t^2 - 8$ . Find the<br>i) initial velocity and acceleration<br>ii) velocity and acceleration after 2 seconds.                                                                         | L4 | CO4        | 10 M        |  |  |  |  |
|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|-------------|--|--|--|--|
| OR     |          |                                                                                                                                                                                                                                                                                                  |    |            |             |  |  |  |  |
| 8      | a)       | Distinguish between Rectilinear motion and curvilinear motion.                                                                                                                                                                                                                                   | L2 | CO1        | 4 M         |  |  |  |  |
|        | b)       | A flywheel 0.5m in radius accelerates uniformly<br>from rest to 360 rpm in 12 seconds. Determine<br>the velocity and acceleration of a point on the rim<br>of the flywheel, 0.1 second after it has started<br>from rest.                                                                        | L4 | CO4        | 10 M        |  |  |  |  |
| UNIT-V |          |                                                                                                                                                                                                                                                                                                  |    |            |             |  |  |  |  |
| 9      | a)<br>b) | How will you apply the D'Alembert's principle<br>for the problems of a rigid body rotate about a<br>fixed axis under the action of constant moment.<br>Two blocks of mass 20 kg and 40 kg are                                                                                                    |    | CO1<br>CO4 | 4 M<br>10 M |  |  |  |  |
|        |          | connected by rope passing over a frictionless<br>pulley as shown in Fig. Assuming coefficient of<br>friction 0.25 for all the contact surfaces, find the<br>tension in spring, acceleration of the system. Also<br>compute the velocity of the system after 4<br>seconds starting from the rest. |    |            |             |  |  |  |  |
|        |          | T<br>20  KB<br>$30^{\circ}$<br>$\mu = 0.25$<br>$60^{\circ}$                                                                                                                                                                                                                                      |    |            |             |  |  |  |  |
|        |          | OR                                                                                                                                                                                                                                                                                               |    |            |             |  |  |  |  |
| 10     | a)       | State the principle of Work and Energy.                                                                                                                                                                                                                                                          | L2 | CO1        | 4 M         |  |  |  |  |
|        | b)       | A body weighing 600 N lies on a smooth inclined                                                                                                                                                                                                                                                  | L4 | CO4        | 10 M        |  |  |  |  |
|        |          | plane. The plane is inclined at an angle of $45^{\circ}$                                                                                                                                                                                                                                         |    |            |             |  |  |  |  |
|        |          | with the horizontal. The body is pulled up the                                                                                                                                                                                                                                                   |    |            |             |  |  |  |  |
|        |          | plane for a distance of 5m. Calculate the work done in pulling the body.                                                                                                                                                                                                                         |    |            |             |  |  |  |  |
|        |          | done in putting the body.                                                                                                                                                                                                                                                                        |    |            |             |  |  |  |  |